Extensions 1→N→G→Q→1 with N=C22 and Q=D4×C32

Direct product G=N×Q with N=C22 and Q=D4×C32
dρLabelID
D4×C62144D4xC6^2288,1019

Semidirect products G=N:Q with N=C22 and Q=D4×C32
extensionφ:Q→Aut NdρLabelID
C22⋊(D4×C32) = C3×D4×A4φ: D4×C32/C3×D4C3 ⊆ Aut C22366C2^2:(D4xC3^2)288,980
C222(D4×C32) = C32×C4⋊D4φ: D4×C32/C3×C12C2 ⊆ Aut C22144C2^2:2(D4xC3^2)288,818
C223(D4×C32) = C32×C22≀C2φ: D4×C32/C62C2 ⊆ Aut C2272C2^2:3(D4xC3^2)288,817

Non-split extensions G=N.Q with N=C22 and Q=D4×C32
extensionφ:Q→Aut NdρLabelID
C22.1(D4×C32) = C32×C4○D8φ: D4×C32/C3×C12C2 ⊆ Aut C22144C2^2.1(D4xC3^2)288,832
C22.2(D4×C32) = C32×C23⋊C4φ: D4×C32/C62C2 ⊆ Aut C2272C2^2.2(D4xC3^2)288,317
C22.3(D4×C32) = C32×C4≀C2φ: D4×C32/C62C2 ⊆ Aut C2272C2^2.3(D4xC3^2)288,322
C22.4(D4×C32) = C32×C22.D4φ: D4×C32/C62C2 ⊆ Aut C22144C2^2.4(D4xC3^2)288,820
C22.5(D4×C32) = C32×C8⋊C22φ: D4×C32/C62C2 ⊆ Aut C2272C2^2.5(D4xC3^2)288,833
C22.6(D4×C32) = C32×C8.C22φ: D4×C32/C62C2 ⊆ Aut C22144C2^2.6(D4xC3^2)288,834
C22.7(D4×C32) = C32×C2.C42central extension (φ=1)288C2^2.7(D4xC3^2)288,313
C22.8(D4×C32) = C32×D4⋊C4central extension (φ=1)144C2^2.8(D4xC3^2)288,320
C22.9(D4×C32) = C32×Q8⋊C4central extension (φ=1)288C2^2.9(D4xC3^2)288,321
C22.10(D4×C32) = C32×C4.Q8central extension (φ=1)288C2^2.10(D4xC3^2)288,324
C22.11(D4×C32) = C32×C2.D8central extension (φ=1)288C2^2.11(D4xC3^2)288,325
C22.12(D4×C32) = C22⋊C4×C3×C6central extension (φ=1)144C2^2.12(D4xC3^2)288,812
C22.13(D4×C32) = C4⋊C4×C3×C6central extension (φ=1)288C2^2.13(D4xC3^2)288,813
C22.14(D4×C32) = D8×C3×C6central extension (φ=1)144C2^2.14(D4xC3^2)288,829
C22.15(D4×C32) = SD16×C3×C6central extension (φ=1)144C2^2.15(D4xC3^2)288,830
C22.16(D4×C32) = Q16×C3×C6central extension (φ=1)288C2^2.16(D4xC3^2)288,831

׿
×
𝔽